京都大学北部キャンパス機器分析拠点セミナーシリーズ 第8回「構造解析セミナー:タンパク質結晶と生体材料につて」

I. タンパク質結晶構造解析システム」 (高輝度単結晶X線構造解析装置 A28) 使用責任者 橋本渉 教授

1996 ~ 2019 マルチワイヤーデテクター(Bruker) 2020 ~ D8 Quest システム (Bruker)

タンパク質のX線結晶構造解析の原理と実際

- 1. タンパク質の結晶構造解析とは
- 2. 結晶からのX線の回折と構造解析
- 3. タンパク質の結晶化
- 4. 回折データの測定の実際(凍結測定と常温測定)

見える限界は用いる電磁波の波長程度

タンパク質の結晶化とX線結晶構造解析の歴史

結晶化

最初のタンパク質の結晶化 (1840, Hunefld)

植物種子タンパク質の結晶化 卵白アルブミンの結晶化

ウレアーゼの結晶化 (1926, Sumner)

イオン交換樹脂(1950~) PAGE(1964~) SDS電気泳動(1970~)

結晶化の目的は昔は精製法、 純度検定、今は構造解析

X線結晶構造解析

空間群の発見 結晶学の確立

X線の発見(1895, Roentgen) 結晶によるX線の回折現象(1912, Laue) X線による原子構造の決定(1913, Bragg) 低分子の構造解析

ペプシン結晶の回折像 (1934, Bernal & Hodgkin) ミオグロビン, ヘモグロビンの構造解析 (1960, Perutz & Kendrew) リゾチームの構造解析 (1965, Phillips) PDBの設立(1971) シンクロトロンの利用(1974~) 結晶凍結法の普及(1991~)

結晶の模式図

1895年 W. Conrad Röntgen によるX線の発見 1912年 Max von Laueによる結晶からのX線回折現象の発見 1913年 Bragg親子(W. Lawrence Bragg, W. Henry Bragg) は岩塩を用いてX線の回折現象を研究,構造解析の基礎 を築く

岩塩

- 1. 回折条件 $2dsin\theta = n\lambda$ (Bragg の式)
- 2.構造因子は波の振幅 回折強度から求める |F(h,k,l)|² = I(h,k,l)
- 3. 結晶の構造因子は原子散乱因子の足し合わせ F(h,k,l)= $\Sigma f_n e^{2\pi i(hx_n+ky_n+lz_n)} = \Sigma \Sigma \Sigma \rho(x,y,z)e^{2\pi i(hx_n+ky_n+lz_n)}$
- 4. 電子密度は構造因子の逆フーリエ変換
- $\rho(x,y,z) = 1/V \cdot \Sigma \Sigma \Sigma F(h,k,l) e^{-2\pi i(hx_n+ky_n+lz_n)}$ 分子構造!
 - $\mathbf{F}(h,k,l) = |\mathbf{F}(h,k,l)| \exp(i\phi_{h,k,l})$

位相が分からない!

* 重原子法 (異常散乱法) * 分子置換法 [AlphaFold server]

X線と光のちがい

Protein Data Bank (PDB) の登録数

タンパク質の結晶は約50%の溶媒(水)を含む タンパク質の結晶化にはスクリーニングが有効

水素結合、ファンデアワールス相互作用、クーロンカ

Sitting-drop vapor diffusion method 96穴インテリプレート プラスチック透明シート

Crystal Screen I (Hampton research co.)において沈殿化剤として塩、 アルコール、水溶性高分子 (PEG)と二価塩を含むもの

A1. 30% PEG 4000, 0.1 M Tris HCl pH 8.5, 0.2 M Magnesium Chloride	F 25. 30% MPD, 0.1 M Na PIPES pH 6.5, 0.2 M Magnesium Acetate
A2. 30% PEG 4000, 0.1 M Na Citrate pH 5.6, 0.2 M Ammonium Acetate	F26. 30% MPD, 0.1 M Na Citrate pH 5.6, 0.2 M Ammonium Acetate
A3. 30% PEG 8000, 0.2 M Ammonium Sulfate	F27. 30% iso-Propanol, 0.1 M Tris HCl pH 8.5, 0.2 M Ammonium Acetate
A4. 30% PEG 4000, 0.1 M Na Acetate pH 4.6, 0.2 M Ammonium Acetate	F28. 30% iso-Propanol, 0.1 M Na Hepes pH 7.5, 0.2 M Magnesium Chloride
A5. 30% PEG 400, 0.1 M Tris HCl pH 8.5, 0.2 M Sodium Citrate	F29. 30% iso-Propanol, 0.1 M Na PIPES pH 6.5, 0.2 M Sodium Citrate
B6. 30% PEG 8000, 0.1 M Na PIPES pH 6.5, 0.2 M Ammonium Sulfate	G30. 20% iso-Propanol, 0.1 M Na Hepes pH 7.5, 0.2 M Sodium Citrate
B7. 30% PEG 4000, 0.2 M Ammonium Sulfate	G31. 20% iso-Propanol, 0.1 M Na Acetate pH 4.6, 0.2 M Calcium Chloride
B8. 30% PEG 4000, 0.1 M Tris HCl pH 8.5, 0.2 M Lithium Sulfate	G32. 20% iso-Propanol, 0.1 M Na Citrate pH 5.6, 20% PEG 4000
B9. 30% PEG 8000, 0.1 M Na PIPES pH 6.5, 0.2 M Sodium Acetate	G33. 10% iso-Propanol, 0.1 M Na Hepes pH 7.5, 20% PEG 4000
B10. 30% PEG 4000, 0.1 M Tris HCl pH 8.5, 0.2 M Sodium Acetate	G34. 2.0 M Ammonium Sulfate
C11. 30% PEG 400, 0.1 M Na Hepes pH 7.5, 0.2 M Magnesium Chloride	H35. 2.0 M Ammonium Sulfate, 0.1 M Tris HCl pH 8.5
C12. 30% PEG 1500	H36. 2.0 M Ammonium Sulfate, 0.1 M Sodium Acetate pH 4.6
C13. 28% PEG 400, 0.1 M Na Hepes pH 7.5, 0.2 M Calcium Chloride	H37. 2.0 M Ammonium Phosphate, 0.1 M Tris HCl pH 8.5
C14. 25% PEG 4000, 0.1 M Na Acetate pH 4.6, 0.2 M Ammonium Sulfate	H38. 0.4 M Ammonium Phosphate
C15. 20% PEG 8000, 0.05 M Potassium Phosphate	H39 1.0 M Ammonium Phosphate, 0.1 M Na Citrate pH 5.6
D16. 20% PEG 8000, 0.1 M Na PIPES pH 6.5, 0.2 M Magnesium Acetate	I40. 1.5 M Lithium Sulfate, 0.1 M Na Hepes pH 7.5
D17. 18% PEG 8000, 0.1 M Na PIPES pH 6.5, 0.2 M Calcium Acetate	I41. 1.4 M Sodium Acetate, 0.1 M Na PIPES pH 6.5
D18. 15% PEG 8000, 0.5 M Lithium Sulfate	I42. 1.0 M Sodium Acetate, 0.1 M Imidazole pH 6.5
D19. 8% PEG 4000. 0.1 M Na Acetate pH 4.6	I43. 4.0 M Sodium Formate
E 20. 8% PEG 8000. 0.1 M Tris HCl pH 8.5	I44. 2.0 M Sodium Formate, 0.1 M Na Acetate pH 4.6
E21. 2% PEG 400. 0.1 M Na Hepes pH 7.5. 2.0 M Ammonium Sulfate	J45. 1.4 M Sodium Citrate, 0.1 M Na Hepes pH 7.5
E22. 2% PEG 8000. 1.0 M Lithium Sulfate	J46. 1.6 M Na, K Phosphate, 0.1 M Na Hepes pH 7.5
E23. 30% MPD. 0.1 M Na Acetate pH 4.6. 0.02 M Calcium Chloride	J47. 0.4 M K, Na Tartrate
F24 30% MPD 0.1 M Na Henes nH 7.5 0.2 M Sodium Citrate	J48. 0.8 M K, Na Tartrate, 0.1 M Na Hepes pH 7.5

装置の概略図

結晶構造解析は結晶格子との闘い パッキングによってはリガンドが結合できない

凍結法(-173°C) クライオループ Flash cooling LN2

非凍結法 (室温~-20°C) ガラスキャピラリー等

X線損傷の遅延 分解能の向上 (Mosaicityの増加) 凍結保護剤の影響 結晶格子の収縮 pHの変化

<u>→</u>リガンドの解離等の構造

X線損傷の増加

分解能の低下

変化が生じることがある

のpH変化の解析.応用糖質科学 第11巻 第2号 79-86 (2021).

Mikami B., Ban M., Suzuki S., Yoon H.J., Miyake O., Yamasaki M., Ogura K., Maruyama Y., Hashimoto W., Murata K. Induced-fit motion of a lid loop involved in catalysis in alginate lyase A1-III. *Acta Crystallogr. D Biol. Crystallogr*. 68, 1207–1216 (2012).

① 低温N2ガス吹付装置のON (使用45分前) 汲出し用ホース

RUN ON HEATER ON

② PROTEUM3の準備

1 3

③-1 結晶のマウントとセンターリング (凍結法)

③-1 結晶のマウントとセンターリング(キャピラリー法)

真上からの低温ガス吹付 低温装置を用いて室温~-20℃の測定が可能

Fig. 2.17 The mounting of a crystal in a glass capillary. (Reproduced by permission of Academic Press, Inc., from Rayment, 1985.)

④ 回折点のチェック Screen Crystals(diffraction Check)

⑤ データ測定 Run experiment (Data Collection)

1	Sample Instrument	Windows	Help	20210512_ikeub_gricoli	1 - Licensed o	o oser at kyötö öni	versity						Run Experime	nt _BX	BROKEN	
100		10					P 14 4	44 🔳 🕪		M	9	0 1 0	1 12			
	Set Up Screen Collect	Sert	lp Experiment	Monitor Experiment												
	Calculate Strategy	lma File Nur	ge location: (name or prefix: (nber for first run: (c: Virames\guest \2021031; 20210312_ikeuti_ghcolKl 1	2_ikeuti_ghcolK	q	Sc	an options:				Default time Default width Detector form	10.000 (0.500	[sec/mage] [degrees] [768x1024		
			Operatio	n Active	Distance [mm]	2Theta [deg]	Omega [deg]	Phi [deg]	Chi [deg]	Scan Options	Time [sec]	Deicing: Width [deg]	Sweep [deg]	Direction	F	
		1	Phi Scan	Yes	-	100 0.000	14	0	-35	5	30.000	0.800	180	0 positive		
	Aun Experiment	2	Phi Scan	Yes		100 0.000	104	0.000	-3		30.000	0.800	18	positive		
	-	4	No Operation	Yes												
	C	5	No Operation	Yes												
Orient Crystal		6	No Operation	Yes												
		7	No Operation	Yes												
	Operatio	n	Active	Distanc [mm]	e 2	2Theta [deg]	Omega [deg]	Phi [deg]		Chi [deg]	Scan Options	Time [sec	e]	Width [deg]	Sweep [deg]	Direction
ĺ.	Phi Scan		Yes		100	0.000	14		0	-35		30	0.000	0.800	180	positive
2	Phi Scan		Yes		100	0.000	104	0.00	0	-35		30	000.	0.800	180	positive
3	No Operation		Yes							18						
		16	No Operation	Yes												
		17	No Operation	Yes				-								
		18	No Operation	Yes												
		19	No Operation	Yes												
		20	No Operation	Yes												z 2 - 1
		21	No Operation	Yes												
		22	No Operation	Yes												
		23	No Operation	Yes	-											
		24	No Operation	Yes											-	
	Reduce Data	25	No Operation	Yes												
	Examine Data								100			[mar				
	Solve Structure	A	opend Strategy	Append Matrix Strategy			Load Table.	Save Tab	(C			Validate	Resun	ne Exec	sute	
	Report	-														

Detecter: Bruker PhotonIII Sample: Lysozyme Wavelength: 1.54 Å Exposure: 2s Distance: 45 mm 2 θ: 14.05 deg Rotation axis: φ Rotation angle: 0.5 deg Total : 120° (240 frames) Edge left, right:1.5, 2.5 Å Edge up, down:1.6 Å

⑤ データのプロセ	ス XDSの場	合 測定データをサ	ーバーで処理
🗔 File Edit View Search Terminal Help	sad@hydra:/spica/usr1/people/sad/bru	uker/guest/20210212takita_p450/CBF/xds210324	
20210212takita_p450_01_0085.cbf 20 20210212takita_p450_01_0086.cbf 20 20210212takita_p450_01_0086.cbf 20 20210 xDSGUI 2018-06-08 rd 20210 20210enu Help	210212takita_p450_2_01_002 210212takita_p450_2_01_002 inning in /spica/usr1/people/sad/bruke	8.cbf 20210212takita_p450_2_01_0139.c 9.cbf 20210212takita_p450_2_01_0140.c r/guest/20210212takita_p450/CBF/xds210324 (on hydr	bf CBFファイルを使用
2021 Projects Frame XDS.INP XYCORR IN	IT COLSPOT IDXREF DEFPIX INT	EGRATE CORRECT tools statistics XDSCONV XS	CALE SHELX
2021 2021 2021 2021 2021 Default is the current directory. The titl	XDSGUI 2018-06-08 m	unning in /spica/usr1/people/sad/bruker/guest/20210212takita_p450/0	CBF/xds210324 (on hydra)
2021 Load rece	It Projects Frame XDS.INP XYCORR IN	IT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT tools sta	atistics XDSCONV XSCALE SHELX
2021	Load pica/usr1/people/sad/br	ruker/guest/20210212takita_p450/CBF/20210212takita_p450_01_0001.cbf	
2021 2021 2021 Choose or create new folder	ISI generate XDS. INP	Untrusted areas (set with r	right mouse button) ♦ ▲ Pixel Value:
XDSGUI 2018-06-08 running in /spica/u	r1/people/sad/bruker/guest/20210212takita_p4	ISO/CBF/xds	value= 0 x= -39, y=
Projects Frame XDS.INP XYCORR INIT COLSPOT I	XREF DEFPIX INTEGRATE CORRECT tools	statistics	Brightness
! written by generate_XDS.INP version 0.8	4 (10-Oct-2018)		Contrast
ORGX= 385.01 ORGY= 510.39 ! values from	File Edit View Search Terminal Help	sad@hydra:/spica/usr1/people/sad/bruker/guest/20210212takita_p4	
DETECTOR_DISTANCE= 89.99964 !read by XYCC OSCILLATION_RANGE= 0.8000 STARTING_ANGLE= 49.99061 X-RAY_WAVELENGTH= 1.54184 NAME_TEMPLATE_00_DATA_FRAMES=/spica/Asr1/	^{RF} The discrepancies in X- and Y- two images DX-CORRECTIONS.cbf the XDS-Viewer. p∈	coordinates of the spots are depicted in the and DY-CORRECTIONS.cbf for inspection with	Zoom
<pre>! REFERENCE_D/IA_SET=xxx/XDS_ASCII.HKD.! DATA_RANGE=1 168 SPOT_RANGE=1 84 ! BACKGROUNRANGE=1 10 ! rather use defa</pre>	THE DATA COLLECTION STATISTICS SPACE_GROUP_NUMBER= 16 UNIT_CELL_CONSTANTS= 52.06	REPORTED BELOW ASSUMES: 53.28 138.94 90.000 90.000 90.000	convolute der
SPACE_GROUF_NUMBER=0 ! UNIT_CELL_CONSTANTS= 70 80 90 90 90 90 90 ! INCLUDE_RESOLUTION_RANGE=50 0 ! after CO ! IDXREF not obeys INCLUDE_RESOLUTION_RA) 21 ************************************	**************************************	
<pre>FRIEDEL'S_LAW-FALSE ! This acts on y ! If the anom S gnal turns out to be or ! use FRIEDEL'S_LW=TRUE instead (r comm ! remove the "!" in the following line: ! STRICT_ABSORPTION_CORRECTION=TRUE </pre>	or The variance v0(I) of the inter is replaced by v(I)=a*(v0(I)+b*I^2) er minimize the discrepancies betw sample statistics of symmetry an asymptotic limit ISa=1/SQRT experimental setup can produce	nsity I obtained from counting statistics 2). The model parameters a, b are chosen ween v(I) and the variance estimated from related reflections. This model implicate (a*b) for the highest I/Sigma(I) that the (Diederichs (2010) Acta Cryst D66, 733-7	
	a b ISa 1.362E+00 6.607E-04 33.34		
	cpu time used elapsed wall-clock time	34.9 sec 1.5 sec	

Menu Help

1	Projects	Frame	XDS.INP	XYCORR	INIT COL	SPOT	IDXREF	DEFPIX	INTEGRATE	CORRECT	tools	statistics	XDSCONV	XSCALE	SHELX	
	SUBSET RESOLU LIMI	F OF JTION LT	INTENSITY NUMB OBSERVE	DATA W ER OF R D UNIQ	ITH SIG EFLECTIO	NAL/NO ONS SIBLE	DISE >= COMPL OF	-3.0 A ETENESS DATA	S FUNCTI R-FACTO observe	ON OF R R-F d exp	RESOLU ACTOR	UTION COMPARED	I/SIGMA	R-meas	CC (1/2)	Anomal Corr
	6. 4. 3. 2. 2. 2. 2. 2.	.19 .40 .60 .12 .79 .55 .36 .21	390 715 933 1090 975 651 508 302 94	0 9 6 16 4 21 2 24 3 26 7 25 7 24 5 20 8 8	44 29 07 59 15 00 43 10 37	1040 1691 2150 2492 2813 3077 3341 3577 3792		90.8% 96.3% 98.0% 98.7% 93.0% 81.2% 73.1% 56.2% 22.1%	5.2 10.7 14.1 29.0 54.1 69.2 88.9 106.7	8 8 8 8 8 8 8 8 8 8 8 1 8 1	5.0% 10.3% 14.1% 29.5% 53.8% 72.2% 91.9% 16.6% 43.6%	3815 7007 9172 10738 9526 6097 4414 1881 221	22.49 12.48 9.92 4.99 2.40 1.34 0.89 0.57 0.58	5.9 12.1 15.9 32.8 62.5 85.4 115.4 145.1 195.4	8 99.8 8 99.1 8 98.3 8 91.8 8 73.9 8 53.9 8 33.7 8 27.9 8 6.3	* -2 * 1 * -2 * -2 * -2 * 0 * 0 * 0
	2. tot	.08 .al	94 5662	8 8 2 175	37 44	3792 23973		22.1% 73.2%	138.5 20.2	8 1 8	43.6% 20.3%	221 52871	0.58	195.4 23.5	8	6.3 98.0

NUMBER	OF	REFLECTIONS IN SELECTED SUBSET OF IMAGES	
NUMBER	OF	REJECTED MISFITS	
NUMBER	OF	SYSTEMATIC ABSENT REFLECTIONS	
NUMBER	OF	ACCEPTED OBSERVATIONS	
NUMBER	OF	UNIQUE ACCEPTED REFLECTIONS	

凍結結晶取扱い器具

シンクロトロンでの測定

実際のタンパク質結晶の回折データの測定はSPring-8などの シンクロトロンで行っています。 非常に強いX線が得られ、波長を変えることも容易です。 現在は極微小結晶(> 1µm)からの回折データの収集も可能です。 X線自由レーザーではシリアルフェムト秒結晶構造解析を用いた 時分割構造解析等が行われています。

拠点機器番号:A-29, A-30

生体材料ミクロ構造 高度解析システムについて

農学研究科 松宮健太郎 南部優子

令和7年2月18日

生体材料ミクロ構造高度解析システムの概要

【目的】

生物の組織や細胞、食品などの生物材料、タンパク質やセルロー スなどの生体高分子等の微細構造の観察

クライオ走査電子顕微鏡 (クライオSEM, A-30)

【特徴】 固定・乾燥といった前処理が不要 ナノオーダーの構造観察が可能

【欠点】 有機物の成分を区別することは できない レーザーラマン顕微鏡 (A-29)

【特徴】 無染色で観察できる 有機物の成分分布が取得可能

【欠点】 分解能はサブミクロン

SEMの原理とSEMの種類と含水試料の前処理方法

【SEMの原理】

物質に電子線を照射した際に生じる二次電 子や反射電子などの信号を利用した顕微鏡 で、ナノオーダーでの観察が可能

【SEMの種類と含水試料の前処理方法】 ・SEMの内部は高真空であり、含水試料の観察には固定、脱水、乾燥といった多くの工程 が必要となる

・低真空SEMは装置内部の真空度を数十Paに 保つことで含水試料の観察が可能となるが、 長時間の観察では水分の蒸発により試料の変 形が見られることがある。また、ゲルや液体 試料の観察は難しい

・クライオSEMは試料を凍結することで含水 試料(ゲルや液体含む)の観察が可能

(参考)食品の組織構造とおいしさ(監修:峯木眞知子,編集:中村卓,小竹佐知子,(株)幸書房, 2025.1初版) Part1-2走査電子顕微鏡による食品観察法 執筆:坂上万里

クライオSEMの概要

【クライオSEMの装置概要】 クライオシステムを搭載したSEM 含水試料を液体窒素やスラッシュ窒素 などで急速凍結した後、冷却されたク ライオステージを使用し、試料を凍結 状態で観察 プレパレーションチャンバー(Prep-

Chamber)内にもクライオステージがあり、そこで割断、昇華、コーティングを行うことができ、装置内で前処理が完了する

※水があった部分は空隙 として観察される

クライオSEM(A-30)の仕様・性能

[SEM]	
型式	SU8230/電界放射形走査電子顕微鏡(FE-SEM)
メーカー	株式会社日立ハイテク
加速電圧(Vacc)	0.5~30 kV
SE分解能	0.8 nm (Vacc = 15 kV, WD = 4 mm)
検出器 (検出できる電子)	Top(BSE) Upper(SE, BSE) Lower(SE) STEM(透過電子)
【クライオシステム】	
型式	Alto2500
メーカー	Gatan Inc.
温度範囲	クライオステージ -185~50°C / Prep-Chamber -180~100°C
スパッター電極	Pt

(出典) SU8200シリーズカタログ((株)日立ハイテクノロジーズ, 2013.5) およびAlto2500カタログ(Gatan Inc., 2007.5)

クライオSEMの観察モードと最大試料サイズ

立体:超薄切片 液体:急速凍結装置(CryoPlunge3) による氷包埋試料

レーザーラマン顕微鏡の概要

【ラマン分光法】 物質に光を照射した際に生じる 散乱光のうち、入射光とは異な る波長をもつ**ラマン散乱光**を用 いて物質の評価を行う分光法 ラマンスペクトルは物質固有で あり、ピークは分子振動や格子 振動に由来する

【レーザーラマン顕微鏡】 ラマン分光装置と光学顕微鏡を 組み合わせた装置 ラマンスペクトルを解析するこ とで成分分布などの情報を得る ことができ、試薬による染色の 必要がない

ラマン散乱のイメージ

(左) ポリエチレンのラマンスペクトル(右) ラマンスペクトルの見方

(出典)株式会社堀場製作所

https://www.horiba.com/jpn/scientific/technologies/raman-imaging-and-spectroscopy/raman-spectroscopy/

レーザーラマン顕微鏡(A-29)の仕様・性能

型式 RAMANtouch ブルカージャパン株式会社(旧ナノフォトン株式会社) メーカー レーザー波長 532 nm, 785 nm レーザー照射方式 ポイント照明/ライン照明 グレーティング 300, 600, 1200 gr/mm 電子冷却式CCD 1340 x 400 画素 検出器 光学顕微鏡 正立型 ライン照射のイメージ 冷却加熱ステージ(-20~120°C) オプション 広視野観察用電動ステージ 空間分解能(X/Y/Z) 350 nm / 500 nm / 1000 nm (532 nm, x100) スペクトル測定範囲 100 cm⁻¹~ 1.2 cm⁻¹ (785 nm, 1200 gr/mm) スペクトル分解能 (FWHM)

(出典)レーザーラマン顕微鏡RAMANtouchカタログ(ナノフォトン(株), 2014.2)

A-29 レーザーラマン顕微鏡の観察モードと試料サイズ

【室温観察】

観察可能な最大試料サイズ:30mmx30mm スライドガラスに載せられる形状 ※試料表面が水平で凹凸のないこと (焦点が合わない部分はラマンスペクトルの強度が低

くなる)

※試料の厚みは薄い方が望ましい

【冷却加熱ステージを使った観察】 観察可能な最大試料サイズ:30mmx30mmx1mm 試料を二枚のカバーガラスに挟んで観察 ※カバーガラスから試料がはみ出ないようにすること ステージに試料が付着すると使用できなくなる(特に 加熱時は要注意)

【観察できない試料】蛍光を強く発する試料、純金属

レーザーラマン顕微鏡観察の実例 (拠点機器番号A-29)

<u>チーズのラマンイメージ</u>

(a) 従来のスポーツドリンク

(b) アイススラリー

スポーツドリンクのラマンイメージ(-5℃)

(出典)食品の組織構造とおいしさ(監修: 峯木眞知子, 編集: 中村卓, 小竹佐知子, (株)幸書房, 2025.1初版) Part14-56.ラマン顕微鏡を用いた事例 執筆: 足立真理子、南部優子、松宮健太郎、松村康生

2種類のヨーグルトの外観および特徴、光学顕微鏡像とラマンイメージ (上段:ヨーグルト1、下段:ヨーグルト2)

(出典)食品の組織構造とおいしさ(監修: 峯木眞知子, 編集: 中村卓, 小竹佐知子, (株)幸書房, 2025.1初版) Part14-56.ラマン顕微鏡を用いた事例 執筆: 足立真理子、南部優子、松宮健太郎、松村康生

冷蔵保存前後のホワイトチョコレートのラマンイメージ

融解前後のホワイトチョコレートのラマンイメージ

(出典)食品の組織構造とおいしさ(監修: 峯木眞知子, 編集: 中村卓, 小竹佐知子, (株)幸書房, 2025.1初版) Part14-56.ラマン顕微鏡を用いた事例 執筆: 足立真理子、南部優子、松宮健太郎、松村康生

クライオ走査電子顕微鏡観察の実例 (拠点機器番号A-30)

乳化物の観察像 1

(出典)T. Ishii, K. Matsumiya, M. Aoshima, Y. Matsumura, npj Science of Food 2 (2018) 15

乳化物の観察像 2

(出典) H. Ho, T. Ishii, K. Matsumiya, M. Iwasa, Y. Matsumura, Journal of Food Engineering 294 (2021) 110411

< bLF > < bLF & SLs > < SLs >

(x3,000)

(出典) K. Matsumiya, Y.A. Suzuki, Y. Hirata, Y. Nambu, Y. Matsumura, Biochem. Cell Biol. 95: 126–132 (2017)

(出典) H. Ho, T. Ishii, K. Matsumiya, M. Iwasa, Y. Matsumura, Journal of Food Engineering 294 (2021) 110411